
C Global Surveyor

1. Overview

The goal of the CGS project is to demonstrate that it is possible to develop software
verification tools that can analyze NASA programs using static analysis techniques to find a
certain class of errors called runtime errors. First, we used a state-of-the-art commercial tool
(PolySpace C-Verifier) and showed that it can successfully find errors in real NASA
software (such as the flight software systems for Mars Path-Finder, Deep Space One, and
Mars Exploration Rover). Second, we used the results of this first experience to design a
research prototype (CGS) that addresses the shortcomings (in terms of precision and
scalability) of the current commercial products.

The CGS tool analyzes C programs to find runtime errors. In brief, CGS analyzes every
instruction in the source code of a C program to "check" if the operations performed in the
instruction can create a problem at runtime (i.e., when the program will be executed).
Specifically, CGS "checks" each instruction in a program to determine if the following
problems can occur:
• access to non-initialized variables: the program attempts to used/read a variable that has

not yet been assigned a value;
• de-references of null pointers: the program attempts to access the memory location

referenced by the pointer even though the reference points to no memory location;
• out-of-bound array accesses: the program attempts to access an element of an a array

using an index that is outside (strictly smaller or bigger than) the index bounds of the
array.

CGS does its verification using static analysis techniques (i.e., techniques that do not require
executing the code) based on the theory of Abstract Interpretation. Therefore, the analysis is
performed at compile time (as opposed to runtime), and it does not require writing input
cases. CGS analysis is conservative in the sense that it performs all checks necessary to find
all errors. In most cases, CGS can certify that a check is correct (no error on any path leading
to the check), or incorrect (there is an error on some paths leading to the check), or irrelevant
because the check corresponds to dead code (the code that cannot be executed). In some
cases, CGS cannot certify the correctness of the check, in which case it issues a warning.

CGS can analyze any C program, but its analysis algorithms have been tuned to be very
precise (i.e, less than 10 percent of the checks are warnings) on programs following the

Page 1
Copyright © 2004 NASA All rights reserved.



"Mars Path-Finder" (MPF) legacy. No precision guarantee is given for other types of C
programs. For the moment, CGS runs only on top of the Linux operating system. For
performance reasons, the analysis performed by CGS can be distributed over several
processors (all running Linux). The results are centralized within an SQL database.

2. Goals

The overall goal of the CGS project is to show NASA developers that software reliability can
be significantly increased by using verification tool based on static program analysis. We
therefore need to demonstrate that it is possible to develop precise, and scalable, software
verification tools that can analyze NASA programs using static analysis techniques to find a
certain class of errors called runtime errors.

In general, developers recognize the usefulness of static analysis, but do not use it in practice
because either commercial static analyzers do not scale or they generate too many warnings
(which still need to be checked using traditional methods such as code inspection or testing).
Our goal is to design and build a research prototype that scales to real NASA software
systems (in the hundreds of thousands of lines of code), and deliver precise results (less than
10 percent of the checks are warnings).

3. Objectives

• The first objective was to assess the strengths and weaknesses of current commercial
static program analyzers when they are applied to some real, and representative, NASA
software systems written in C.

• The second objective is to develop a research prototype that addresses these shortcomings
and demonstrate that it indeed scales and is precise for the chosen C programs (i.e., the
MPF legacy software systems).

• The third objective is to study how the prototype performs on other C programs
developed at NASA (for the International Space Station for example) and extend the
algorithms to cover these cases.

• The fourth objective is to study how we can carry these experience from C programs to
C++ programs so that we can address the next-generation of NASA software.

4. NASA Application

C Global Surveyor can be used in different parts of NASA. Our primary customer is the Jet
Propulsion Lab, and in particular, its Mars program. Thus, CGS has been applied to the flight
software of the Mars Path-Finder mission (135K lines of code), and of the Deep Space One
mission (280K lines of code); CGS will be applied shortly to the flight software of the Mars
Exploration Rover mission (650K lines of code). We will also look at other JPL-based
missions.

C Global Surveyor

Page 2
Copyright © 2004 NASA All rights reserved.



We also plan to apply CGS to C code developed at other NASA centers such as Johnson
Space Center and Marshall Space Flight Center. For example, we will analyze the code
developed for the Habitat Holding Rack for the International Space Station. We are actively
seeking other examples of large C programs in these centers.

The CGS extension that will deal with C++ programs will be developed so that it can be used
during the development of the Mars Science Laboratory mission (MSL). Currently, MSL
plans on using the Mission Data System (MDS) software platform which is implemented in
C++. This tool will require significant advances in the analysis of pointers in the context of
dynamic data structures.

5. Milestones

• Demonstrate an order of magnitude in verification cost improvement when using static
analysis techniques over traditional techniques such as testing or code inspection ->
Achieved in 2002.

• Analyze flight software for MPF-related missions with commercial tool:
• Mars Path-Finder -> Achieved in May 2002
• Deep Space One -> Achieved in September 2002
• Mars Exploration Rover -> Achieved in June 2003

• Design and build CGS prototype -> Achieved in May 2003
• Analyze flight software for MPF-related missions with CGS:

• Mars Path-Finder -> Achieved in June 2003
• Deep Space One -> Achieved in July 2003
• Mars Exploration Rover -> Due date March 2004

• Analyze other NASA C code:
• Habitat Holding Rack -> Due date June 2004

• Identify a verifiable (by static analysis techniques) subset of C++ -> Due date June 2004
• Design extension for object-oriented framework to support static analysis -> Due date

December 2004
• Build prototype for static analysis of (C++) MDS programs -> Due date April 2005
• Demonstrate (and measure performance of) analysis of a to-be-determined MDS

adaptation -> Due date September 2005
Publications
Last changed: 20 December 2004 by Raymond De Ocampo

C Global Surveyor

Page 3
Copyright © 2004 NASA All rights reserved.


	1 Overview
	2 Goals
	3 Objectives
	4 NASA Application
	5 Milestones

